skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Setterholm, Benjamin R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a study of the double-lined spectroscopic binary HD 21278 that contains one of the brightest main-sequence stars in the youngαPersei open cluster. We analyzed new spectra and reanalyzed archived spectra to measure precise new radial velocity curves for the binary. We also obtained interferometric data using the CHARA Array at Mount Wilson to measure the sky positions of the two stars and the inclination of the ∼2 mas orbit. We determine that the two stars have masses of 5.381 ± 0.084Mand 3.353 ± 0.064M. From isochrone fits, we find the cluster’s age to be 49  ±  7 Myr (using PARSEC models) or 49.5 ± 6 Myr (MIST models). Finally, we revisit the massive white dwarfs that are candidate escapees from theαPersei cluster to try to better characterize the massive end of the white dwarf initial–final mass relation. The implied progenitor masses challenge the idea that Chandrasekhar-mass white dwarfs are made by single stars with masses near 8M
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  2. Abstract Planets are a natural byproduct of the stellar formation process, resulting from local aggregations of material within the disks surrounding young stars. Whereas signatures of gas-giant planets at large orbital separations have been observed and successfully modeled within protoplanetary disks, the formation pathways of planets within their host star’s future habitable zones remain poorly understood. Analyzing multiple nights of observations conducted over a short, 2 month span with the MIRC-X and PIONIER instruments at the CHARA Array and VLTI, respectively, we uncover a highly active environment at the inner-edge of the planet formation region in the disk of HD 163296. In particular, we localize and track the motion of a disk feature near the dust-sublimation radius with a pattern speed of less than half the local Keplerian velocity, providing a potential glimpse at the planet formation process in action within the inner astronomical unit. We emphasize that this result is at the edge of what is currently possible with available optical interferometric techniques and behooves confirmation with a temporally dense followup observing campaign. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  3. Abstract The Cepheid AW Per is a component in a multiple system with a long-period orbit. The radial velocities of Griffin cover the 38 yr orbit well. An extensive program of interferometry with the Center for High Angular Resolution Astronomy array is reported here, from which the long-period orbit is determined. In addition, a Hubble Space Telescope high-resolution spectrum in the ultraviolet demonstrates that the companion is itself a binary with nearly equal-mass components. These data combined with a distance from Gaia provide a mass of the Cepheid (primary) ofM1= 6.79 ± 0.85M. The combined mass of the secondary isMS= 8.79 ± 0.50M. The accuracy of the mass will be improved after the fourth Gaia data release, expected in approximately two years. 
    more » « less
  4. Context.V838 Mon is a stellar merger remnant that erupted in a luminous red nova event in 2002. Although it has been well studied in the optical, near-infrared, and submillimeter regimes, its structure in the mid-infrared wavelengths remains elusive. Over the past two decades, only a handful of infrared interferometric studies have been performed, suggesting the presence of an elongated structure at multiple wavelengths. However, given the limited nature of these observations, the true morphology of the source has not yet been conclusively determined. Aims.By performing image reconstruction using observations taken at the VLTI and CHARA, we aim to map out the circumstellar environment in V838 Mon. Methods.We observed V838 Mon with the MATISSE (LMNbands) and GRAVITY (Kband) instruments at the VLTI as well as the MIRCX/MYSTIC (HKbands) instruments at the CHARA array. We geometrically modelled the squared visibilities and the closure phases in each of the bands to obtain the constraints on the physical parameters. Furthermore, we constructed high-resolution images of V838 Mon in theHKbands using the MIRA and SQUEEZE algorithms to study the immediate surroundings of the star. Lastly, we also modelled the spectral features seen in theKandMbands at various temperatures. Results.The image reconstructions show a bipolar structure that surrounds the central star in the post-merger remnant. In theKband, the super-resolved images show an extended structure (uniform disk diameter ~1.94 mas) with a clumpy morphology that is aligned along a north-west position angle (PA) of −40°. On the other hand, in theHband, the extended structure (uniform disk diameter ~1.18 mas) lies roughly along the same PA. Yet the northern lobe is slightly misaligned with respect to the southern lobe, which results in the closure phase deviations. Conclusions.The VLTI and CHARA imaging results show that V838 Mon is surrounded by features resembling jets that are intrinsically asymmetric. This is further confirmed by the closure phase modelling. Further observations with VLTI can help to determine whether this structure shows any variations over time and also if such bi-polar structures are commonly formed in other stellar merger remnants. 
    more » « less
  5. ABSTRACT We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system. 
    more » « less
  6. Mérand, Antoine; Sallum, Stephanie; Sanchez-Bermudez, Joel (Ed.)
    The Michigan Young STar Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the United States National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA array in July 2021, with baselines up to 331 meters, MYSTIC provides a maximum angular resolution of λ/2B ∼ 0.7 mas. The instrument injects phase corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC utilizes a high frame rate, ultra-low read noise SAPHIRA detector, and implements two beam combiners: a 6-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a 4-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J+H band) instrument for simultaneous fringe-tracking and imaging, and shares its software suite with the latter to allow a single observer to operate both instruments. Herein, we present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future. 
    more » « less
  7. Abstract We present measurements of the interferometrically resolved binary star system 12 Com and the single giant star 31 Com in the cluster Coma Berenices. 12 Com is a double-lined spectroscopic binary system consisting of a G7 giant and an A3 dwarf at the cluster turnoff. Using an extensive radial velocity data set and interferometric measurements from the Palomar Testbed Interferometer and the Center for High Angular Resolution Astronomy array, we measured massesM1= 2.64 ± 0.07MandM2= 2.10 ± 0.03M. Interferometry also allows us to resolve the giant and measure its size asR1= 9.12 ± 0.12 ± 0.01R. With the measured masses and radii, we find an age of 533 ± 41 ± 42 Myr. For comparison, we measure the radius of 31 Com to be 8.36 ± 0.15R. Based on the photometry and radius measurements, 12 Com A is likely the most evolved bright star in the cluster, large enough to be in the red giant phase, but too small to have core helium burning. Simultaneous knowledge of 12 Com A’s mass and photometry puts strong constraints on convective core overshooting during the main-sequence phase, which in turn reduces systematic uncertainties in the age. Increased precision in measuring this system also improves our knowledge of the progenitor of the cluster white dwarf WD1216+260. 
    more » « less
  8. Abstract The cool hypergiant star RW Cephei is currently in a deep photometric minimum that began several years ago. This event bears a strong similarity to the Great Dimming of the red supergiant Betelgeuse that occurred in 2019–2020. We present the first resolved images of RW Cephei that we obtained with the CHARA Array interferometer. The angular diameter and Gaia distance estimates indicate a stellar radius of 900–1760R, which makes RW Cephei one of the largest stars known in the Milky Way. The reconstructed, near-infrared images show a striking asymmetry in the disk illumination with a bright patch offset from the center and a darker zone to the west. The imaging results depend on assumptions made about the extended flux, and we present two cases with and without allowing extended emission. We also present a recent near-infrared spectrum of RW Cep that demonstrates that the fading is much larger at visual wavelengths compared to that at near-infrared wavelengths as expected for extinction by dust. We suggest that the star’s dimming is the result of a recent surface mass ejection event that created a dust cloud that now partially blocks the stellar photosphere. 
    more » « less
  9. Abstract The inner regions of protoplanetary disks host many complex physical processes such as star–disk interactions, magnetic fields, planet formation, and the migration of new planets. To study directly this region requires milliarcsecond angular resolution, beyond the diffraction limit of the world's largest optical telescopes and even too small for the millimeter-wave interferometer Atacama Large Millimeter/submillimeter Array (ALMA). However, we can use infrared interferometers to image the inner astronomical unit. Here, we present new results from the CHARA and VLTI arrays for the young and luminous Herbig Be star HD 190073. We detect a sub-astronomical unit (sub-AU) cavity surrounded by a ring-like structure that we interpret as the dust destruction front. We model the shape with six radial profiles, three symmetric and three asymmetric, and present a model-free image reconstruction. All the models are consistent with a near face-on disk with an inclination ≲20°, and we measure an average ring radius of 1.4 ± 0.2 mas (1.14 au). Around 48% of the total flux comes from the disk with 15% of that emission appearing to emerge from inside the inner rim. The cause of emission is still unclear, perhaps due to different dust grain compositions or gas emission. The skewed models and the imaging point to an off-center star, possibly due to binarity. Our image shows sub-AU structure, which seems to move between the two epochs inconsistently with Keplerian motion and we discuss possible explanations for this apparent change. 
    more » « less